Common Causes of Failure Among Process Mining Initiatives, and How to Avoid Them
Executive Summary Process Mining is an extremely useful tool in the practice of modern process automation. It not only helps to ensure processes and data align with company expectations but also can support organizations in maximizing process efficiencies and in helping companies focus on ways to improve customer service. Despite the usefulness and applicability of process mining in most business processes, there are several major pitfalls that can severely handicap how well process mining works if not addressed properly, and the best time to do that is before implementation begins. In this blog we identify and describe five such challenges that new users of process mining need to make sure to avoid. Keep in mind, process mining encompasses a tremendously growing and expanding field of automation techniques, so for customers considering use of process mining for the first time there is an ever-expanding set of features and techniques from which to choose. Of course, the critical consideration is which ones are the most beneficial for your company right now and in the immediate future. With the rate of change in the tool sets, it is unrealistic to factor in projections of the long term when it comes to process mining. As noted, process mining tools are constantly under development and have ever expanding sets of major features and capabilities, including, most importantly, ever-increasing amounts of AI modelling and projections throughout the entire process mining framework. Because of this, it is critical that companies not be entirely dependent on the professional staff or partner consultants for the selected process mining tool. Company personnel need to be key contributors to the implementation of process mining on all a company’s processes. Companies need to take the significant step necessary to educate internal staff on the selected tool (and on process mining in general), to ensure that the tool succeeds and provides significant benefits to the company. Here are some of the most common challenges companies face in their process mining initiatives. Since process mining tools are constantly being updated and new features and capabilities are being added, these particular challenges may lessen in importance over time and/or be replaced by new challenges due to advances in the tools. Using Process Mining for a Process that Doesn’t Really Need It While choosing the tool most appropriate for your company is a critical step, it is also important to analyze your own company’s processes thoroughly and take enough time to figure out where process mining can be best used and provide the most benefit. There are several signs in a process that can make it a very good candidate for process mining. These include overly complex data; no clear data structure apparent; unidentifiable problems, deviations and bottlenecks found in the process- just to name a few. By picking a process that is not entirely in need of process mining, a company is essentially wasting its money for no important reason. The way to ensure that a process mining tool will be maximizing company benefits is to make sure to deploy it for a process that checks off the most boxes of being a good candidate. Although using a process mining tool does not automatically correlate to maximizing a company’s profit, picking the most appropriate process to use the tool to start with will definitely increase a company’s chances at success and will greatly increase the internal momentum within the company to continue to expand the processes covered by process mining. The Process Contains Incomplete Data Having incomplete data in a process will be an obvious bump in the road towards achieving full process automation. Since process mining tools are specifically designed to find gaps in the data, using process mining for a process with incomplete data can make some sense in helping process engineers to better understand these gaps. However, it will definitely be easier and more straightforward if these gaps can be filled before the process mining tool is implemented. Depending on which part of a process the data is missing, if there is missing data, the resulting process mining outputs may be significantly degraded as process mining tools produce a fully linked chain of events where each successive event impacts the rest of the actions. If data is missing in one part of a process, that will impede progress in gaining a full understanding of the process using a process mining tool. The Process Has Too Much “Concept Drifting” “Concept Drift” refers to the tendency of processes to change over time, in particular while they are under the ‘analysis microscope’ of the process mining tool. For example, process changes can occur during different seasons; this is an example of how processes can change periodically. The chart below demonstrates the various types of concept drifting that can occur in a process, whatever the underlying reason may be. These drifts can impact the digital structure that process mining comes up with and will make the process mining analysis and results very unstable and difficult to interpret. Splitting a process up into several smaller event logs is often an easy and effective way to discover possible concept drifting. Being aware of and managing concept drift in your process from the beginning before process mining is first implemented will help ensure that it remains controllable and understandable as process mining procedures are implemented, and prevent ‘drifts’ from having negative impacts on process mining analysis and results. Data is Not in an Appropriate Format Pre-processing and data preparation are vital steps to a successful process mining initiative and unfortunately this step is often overlooked. It is crucial to look at the import format of your data to ensure that it agrees with the process mining tool you have selected. If there is a mismatch in format, the data will likely not be processed fully or even at all. In these cases, analyses from the process mining tools will be of poor quality, showing results with missing spots or even a completely blank event log. Clearly this needs